Colour dipole approach to Drell-Yan and heavy quarkonia production at RHIC and LHC

Victor Goncalves¹, Jan Nemchik^{2,3}, Roman Pasechnik¹, Michal Šumbera^{4,5}

- (1) Dept. of Astronomy and Theoretical Physics, Lund University, SE 223-62 Lund, Sweden (2) Czech Technical Univ. in Prague, FNSPE, Břehová 7, 11519 Prague, Czech Republic
 - (3) Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice, Slovakia
 - (4) Nuclear Physics Inst. ASCR, 25068 Řež/Prague, Czech Republic (5) speaker, e-mail: sumbera@ujf.cas.cz
 - (5) speaker, e-maii: sumbera@uji.cas.c.

Outline

- Motivation
- Color Dipole Description of Drell-Yan process
 - $pp \rightarrow \gamma^*/Z^0 \rightarrow \ell^+\ell^-$
 - $pA \rightarrow \gamma^*/Z^0 \rightarrow \ell^+\ell^-$
 - Dilepton hadron correlations
- Color Dipole Description of Quarkonium Production
- Conclusions and Outlook

Introduction

Drell-Yan and heavy quarkonia studies

- Drell-Yan (DY) in pp/pA/AA collisions is an excellent tool to investigate QCD in an extended kinematical range of energies and rapidities.
- DY in pp@LHC allows to test the Standard Model (SM) and search for New Physics beyond the SM. In pA/AA at RHIC and LHC it could be used to investigate the onset of initial-state effects.
- Color dipole description of DY in pp/pA allows to test different dipole
- Quarkonia production in pp/pA, as well as high- p_T forward particle
- In pp heavy quark masses provide hard scale to study quarkonia

Drell-Yan and heavy quarkonia studies

- Drell-Yan (DY) in pp/pA/AA collisions is an excellent tool to investigate QCD in an extended kinematical range of energies and rapidities.
- DY in pp@LHC allows to test the Standard Model (SM) and search for New Physics beyond the SM. In pA/AA at RHIC and LHC it could be used to investigate the onset of initial-state effects.
- Color dipole description of DY in pp/pA allows to test different dipole cross section parametrizations used in low-x DIS.
- Quarkonia production in pp/pA, as well as high- p_T forward particle
- In pp heavy quark masses provide hard scale to study quarkonia

Drell-Yan and heavy quarkonia studies

- Drell-Yan (DY) in pp/pA/AA collisions is an excellent tool to investigate QCD in an extended kinematical range of energies and rapidities.
- DY in pp@LHC allows to test the Standard Model (SM) and search for New Physics beyond the SM. In pA/AA at RHIC and LHC it could be used to investigate the onset of initial-state effects.
- Color dipole description of DY in pp/pA allows to test different dipole cross section parametrizations used in low-x DIS.
- Quarkonia production in pp/pA, as well as high-p_T forward particle production in pA, are traditionally very important probes of QCD dynamics e.g. QCD factorisation, gluon resummation, higher order PT and non-PT effects, medium properties, CGC etc.
- In pp heavy quark masses provide hard scale to study quarkonia production mechanisms in pQCD (factorisation breaking, CS vs. CO,...)
 cc̄ are special - m_c is at the boundary between pQCD and soft QCD.

Color dipole description of Drell-Yan process

Frame-dependent description of Drell-Yan process

- B. Kopeliovich, hep-ph/9609385: (in DY) ... statement that the annihilating quark and antiquark belong to the beam and to the target respectively ... is not Lorentz invariant.
 - In the centre of mass frame, the DY process looks like $q\bar{q}$ annihilation

 In the target rest frame, the DY process looks like fragmentation of a projectile quark into a dilepton via bremsstrahlung of a heavy photon

- Partonic fluctuation lifetime is enhanced: $\Delta \tau_{lab} \approx \sqrt{s}/m_p \times \Delta \tau_{cms}$.
- The photon can be radiated before or after the quark scattering.

Frame-dependent description of Drell-Yan process

- B. Kopeliovich, hep-ph/9609385: (in DY) ... statement that the annihilating quark and antiquark belong to the beam and to the target respectively ... is not Lorentz invariant.
 - In the centre of mass frame, the DY process looks like $q\bar{q}$ annihilation

In the target rest frame, the DY process looks like fragmentation of a projectile guark into a dilepton via bremsstrahlung of a heavy photon

Frame-dependent description of Drell-Yan process

- B. Kopeliovich, hep-ph/9609385: (in DY) ... statement that the annihilating quark and antiquark belong to the beam and to the target respectively ... is not Lorentz invariant.
 - In the centre of mass frame, the DY process looks like $q\bar{q}$ annihilation

In the target rest frame, the DY process looks like fragmentation of a projectile guark into a dilepton via bremsstrahlung of a heavy photon

- Partonic fluctuation lifetime is enhanced: $\Delta \tau_{lab} \approx \sqrt{s}/m_p \times \Delta \tau_{cms}$.
- The photon can be radiated before or after the quark scattering.

Color dipole description of DY process

- J. Raufeisen et al., Phys. Rev. D 66, 034024 (2002):
 - In the kinematical region where $\sqrt{s} \gg$ all other scales (e.g. m_c , m_b), the DY process can be formulated in the target rest frame in terms of the same color dipole cross section which is used in low-x DIS [1]:

$$\frac{d\sigma(qN\to\gamma^*X)}{d\ln\alpha} = \int d^2\rho \, \left|\Psi_{\gamma^*q}(\alpha,\rho)\right|^2 \, \sigma_{q\bar{q}}^N(\alpha\rho,x)$$

 $\Psi_{\gamma^*q}(\alpha,\rho)$ – LC wave function; gives rate of $q\to\gamma^*q$ EM radiation, is PT calculable. $\sigma_{q\bar{q}}^N$ – dipole cross section; has NP origin, comes from phenomenology (GBW [2] *etc.*) α – LC momentum fraction of parent quark taken away by γ^* . ρ – transverse separation between γ^* and final quark.

$$\frac{d^2\sigma(\rho N \rightarrow \ell^+\ell^-X)}{dM^2dx_F} = \frac{\alpha_{em}}{3\pi M^2} \frac{x_1}{x_1 + x_2} \int_{x_1}^1 \frac{d\alpha}{\alpha^2} \sum_{f=1}^{N_f} Z_f^2 \Big[q_f\Big(\frac{x_1}{\alpha}, \mu^2\Big) + \bar{q}_f\Big(\frac{x_1}{\alpha}, \mu^2\Big) \Big] \frac{d\sigma(qN \rightarrow \gamma^*X)}{d\ln\alpha d^2p_T}$$

$$x_1 = \frac{2P_2 \cdot p}{s}, \ x_2 = \frac{2P_1 \cdot p}{s}, \ s = (P_1 + P_2)^2, \ p^2 = M^2 \equiv M_{\ell\bar{\ell}}^2, \ x_F = x_1 - x_2 = 2p_L/\sqrt{s}$$

 $\mu_F^2 = p_T^2 + (1 - x_1)M^2$ – factorization scale at which the projectile PDF q_f is probed.

^[1] N. N. Nikolaev and B. G. Zakharov, Z. Phys. C49, 607 (1991)

^[2] K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D 59, 014017 (1999); ibid 60, 114023 (1999); PRL 86, 596 (2001)

$pp o \gamma^*/Z^0 o \ell^+\ell^-$: Color dipole approach @ large M

• Quark bremsstrahlung of a virtual gauge boson G^* ($G = \gamma, Z^0$)

$$\frac{d\sigma(pp\to [G^*\to \ell^+\ell^-]X)}{d^2p_TdM^2d\eta}=\mathcal{F}_G(M)\,\frac{d\sigma(pp\to G^*X)}{d^2p_Td\eta}\,,\qquad G=\gamma^*/Z^0$$

where
$$\mathcal{F}_{\gamma}(M)=rac{lpha_{em}}{3\pi M^2}\,, \qquad \mathcal{F}_{Z}(M)=\mathrm{Br}(Z^0 o\ell^+\ell^-)
ho_{Z}(M)$$
 and $ho_{Z}(M)=rac{1}{\pi}\,rac{M\Gamma_{Z}(M)}{(M^2-m_Z^2)^2+[M\Gamma_{Z}(M)]^2}\,, \qquad \Gamma_{Z}(M)/M\ll 1\,,$

with
$$\Gamma_Z(M) = \frac{\alpha_{em}M}{6\sin^2 2\theta_W} \Big(\frac{160}{3}\sin^4\theta_W - 40\sin^2\theta_W + 21\Big).$$

• Calculations done with $m_u = m_d = m_s = 0.14 \,\mathrm{GeV}$, $m_c = 1.4 \,\mathrm{GeV}$, $m_b = 4.5 \,\mathrm{GeV}$, and with the CT10 NLO parametrization* of the projectile quark PDFs and the factorization scale $\mu_F = M$.

^{*)} H. L. Lai et al., Phys. Rev. D 82, 074024 (2010).

Color dipole cross section parametrizations used

Dipole cross section parametrizations used: GBW, BGBK, IP-sat.

GBW: K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D **59**, 014017 (1999); 60, 114023 (1999); PRL **86**, 596 (2001) $\left[\frac{\rho^2 Q_s^2(x)}{\rho^2 Q_s^2(x)} \right]^{-\frac{2}{3}} \frac{(x_0)^3}{\rho^2 Q_s^2(x)}$

$$\sigma_{q\bar{q}}(\rho,x) = \sigma_0 \left[1 - \exp(-\frac{\rho^2 Q_s^2(x)}{4}) \right], Q_s^2(x) = Q_0^2 \left(\frac{x_0}{x}\right)^{\lambda}$$

BGBK: J. Bartels, K. Golec-Biernat and H. Kowalski, Phys. Rev. D 66, 014001 (2002)

$$\sigma_{q\bar{q}}(\rho,x) = \sigma_0 \left[1 - \exp\left(-\frac{\pi^2}{\sigma_0 N_c} \rho^2 \alpha_s(\mu^2) x g(x,\mu^2)\right) \right], \\ \frac{\partial x g(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 dz P_{gg}(z) \frac{x}{z} g(\frac{x}{z},\mu^2)$$

IP-sat: H. Kowalski, L. Motyka and G. Watt, Phys. Rev. D **74**, 074016 (2006); G. Watt and H. Kowalski, ibid D **78**, 014016 (2008)

$$\sigma_{q\bar{q}}(\rho, x) = 2 \int d^2b \left[1 - \exp\left(-\frac{\pi^2}{2N_c} \rho^2 \alpha_s(\mu^2) x g(x, \mu^2) T_G(\mathbf{b}) \right) \right], T_G(\mathbf{b}) = (1/2\pi B_G) \exp(-b^2/2B_G)$$

• $\sigma(pp \to Z^0)$ is sensitive to dipole cross section parametrizations:

\sqrt{s} (TeV)	GBW			DATA [nb]
		1.208		0.937 ± 0.037 [1]
				0.974 ± 0.044 [2]
	1.083	1.427	1.183	1.15 ± 0.37 [3]
14 (13)	1.852	2.797	2.514	(1.98 ± 0.39) [4]

^[1] ATLAS: G. Aad et al. (ATLAS Collaboration), JHEP 12, 060 (2010)

4] ATEAS. G. Aad et al. (ATEAS Collaboration), Frilys. Lett. B 739, 601 (2016).

^[2] CMS: V. Khachatryan et al. (CMS Collaboration), JHEP 10, 132 (2011)

^[2014] CMS: V. Khachatryan et al. (CMS Collaboration), Phys. Rev. Lett. 112, 191802 (2014)

Color dipole cross section parametrizations used

Dipole cross section parametrizations used: GBW, BGBK, IP-sat.

GBW: K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D **59**, 014017 (1999); 60, 114023 (1999); PRL **86**, 596 (2001) $\left[\frac{\rho^2 Q_s^2(x)}{\rho^2 Q_s^2(x)} \right]^{-\frac{2}{3}} = \frac{2}{3} \left(\frac{x_0}{\lambda} \right)^{\frac{1}{3}}$

$$\sigma_{q\bar{q}}(\rho, x) = \sigma_0 \left[1 - \exp(-\frac{\rho^2 Q_{\bar{s}}^2(x)}{4}) \right], Q_{\bar{s}}^2(x) = Q_0^2 \left(\frac{x_0}{x}\right)^{\lambda}$$

BGBK: J. Bartels, K. Golec-Biernat and H. Kowalski, Phys. Rev. D 66, 014001 (2002)

$$\sigma_{q\bar{q}}(\rho, x) = \sigma_0 \left[1 - \exp\left(-\frac{\pi^2}{\sigma_0 N_c} \rho^2 \alpha_s(\mu^2) x g(x, \mu^2)\right) \right], \quad \frac{\partial x g(x, \mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 dz P_{gg}(z) \frac{x}{z} g(\frac{x}{z}, \mu^2)$$

IP-sat: H. Kowalski, L. Motyka and G. Watt, Phys. Rev. D **74**, 074016 (2006); G. Watt and H. Kowalski, ibid D **78**, 014016 (2008)

$$\sigma_{q\bar{q}}(\rho, x) = 2 \int d^2b \left[1 - \exp\left(-\frac{\pi^2}{2N_c}\rho^2\alpha_s(\mu^2)xg(x, \mu^2)T_G(\mathbf{b})\right) \right], T_G(\mathbf{b}) = (1/2\pi B_G)\exp(-b^2/2B_G)$$

• $\sigma(pp \to Z^0)$ is sensitive to dipole cross section parametrizations:

	\sqrt{s} (TeV)	GBW	BGBK	IP-SAT	DATA [nb]
•	7	0.950	1.208	0.986	0.937 ± 0.037 [1] 0.974 ± 0.044 [2]
	8	1.083	1.427	1.183	1.15 ± 0.37 [3]
	14 (13)	1.852	2.797	2.514	(1.98 ± 0.39) [4]

^[1] ATLAS: G. Aad et al. (ATLAS Collaboration), JHEP 12, 060 (2010).

[4] ATLAS: G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 759, 601 (2016).

^[2] CMS: V. Khachatryan et al. (CMS Collaboration), JHEP 10, 132 (2011).

^[3] CMS: V. Khachatryan *et al.* (CMS Collaboration), Phys. Rev. Lett. **112**, 191802 (2014). [4] ATLAS: G. Aad *et al.* (ATLAS Collaboration), Phys. Lett. B **759**, 601 (2016).

DY: Color dipole approach vs. NLO pQCD calculations

Nucl. Phys. A 948, 63 (2016)

CT14: S. Dulat et al., arXiv:1506.07443v2 [hep-ph] MMHT14: L. A. Harland-Lang et al., Eur. Phys. J. 75 5, 204 (2015)

ATLAS data: G. Aad et al., JHEP 1406, 112 (2014)

 Confirms previous observation^[1,2] that dipole approach effectively accounts for higher order pQCD corrections

J. Raufeisen, J.-C. Peng and G. C. Nayak, Phys. Rev. D 66, 034024 (2002);
 M. B. Johnson et al. Phys. Rev. C 75, 035206 (2007); M. B. Johnson et al. ibid C 75, 064905 (2007).

DY: Color dipole approach vs. NLO pQCD calculations

• CMS data on $pp \to Z^0 \to \ell^+\ell^-$

- Confirms previous observation^[1,2] that dipole approach effectively accounts for higher order pQCD corrections
- Fails outside the region of dipole description validity (i.e. at low p_T).

^[1] J. Raufeisen, J.-C. Peng and G. C. Nayak, Phys. Rev. D 66, 034024 (2002);

^[2] M. B. Johnson et al. Phys. Rev. C 75, 035206 (2007); M. B. Johnson et al. ibid C 75, 064905 (2007).

$\overline{ ho ho} ightarrow \gamma^*/Z^0 ightarrow \ell^+\ell^-$ @ LHC

ATLAS: G. Aad et al. (ATLAS Collaboration), JHEP **1406**, 112 (2014), Phys. Lett. B **725** 223 (2013). CMS: V. Khachatrvan et al. (CMS Collaboration), Eur. Phys. J. **75**. 147 (2015).

$pp o \gamma^*/Z^0 o \ell^+\ell^-$ at large M @ RHIC

Dilepton invariant mass spectra at large M are sensitive to different dipole cross section $\sigma^N_{o\bar{o}}$ parametrizations.

DY: Color dipole approach @ Tevatron and LHC

Color dipole predictions for DY@RHIC

• Sensitive to different parametrizations of dipole cross section $\sigma^{N}_{qar{q}}$

Color dipole approach @ LHC: $pPb ightarrow \gamma^*/Z^0 ightarrow \ellar\ell$

ATLAS: G. Aad *et al.* (ATLAS Collaboration), Phys. Rev. C92, 044915 (2015). CMS: V. Khachatryan *et al.* (CMS Collaboration), arXiv:1512.06461 [hep-ex].

Dilepton - hadron correlations

• In both pA and pp collisions DY production is accompanied by hadron production from fragments of the quark which radiated γ^* .

Figure from A. Staśto et al., Phys. Rev. D 86, 014009 (2012).

\Rightarrow Study γ^* -h azimuthal correlations*

J. Jalilian-Marian and A. H. Rezaeian, Phys. Rev. D 86, 034016 (2012).

 $[\]star$) For γ -h correlations see: A. H. Rezaeian, Phys. Rev. D **86**, 094016 (2012),

γ^* - π azimuthal correlations in pA

 \Rightarrow quark, in order to radiate photon, acquires its p_T via multiple scattering with gluons instead \Rightarrow double peak structure on the away side $\Delta \phi = \pi$ appears

[A. Stasto et al., Phys. Rev. D 86, 014009 (2012)].

G^* -h azimuthal correlation function $C(\Delta\phi)$

 Azimuthal correlations between dilepton and hadron are investigated using coincidence probability per trigger particle G*:

$$C(\Delta\phi) = rac{\int_{p_T,p_T^h>p_T^{
m cut}} dp_T p_T \; dp_T^h p_T^h \; rac{d\sigma(pp o hG^*X)}{dYdy_h d^2 p_T d^2 p_T^h}}{\int_{p_T>p_T^{
m cut}} dp_T p_T \; rac{d\sigma(pp o G^*X)}{dYd^2 p_T}}$$

where p_T^{cut} [1] is the lower cut-off on transverse momenta of dilepton G^* and hadron h and $\Delta \phi$ is the angle between them.

 To describe interactions of the incoming quark with the target color field we employ GBW model for unintegrated gluon distribution function $F(x_{\sigma}, k_{\tau}^{g}) = [\pi Q_{s}^{2}(x_{\sigma})]^{-1} \exp(-k_{\tau}^{g^{2}}/Q_{s}^{2}(x_{\sigma})), Q_{s}^{2}(x) = Q_{0}^{2} \left(\frac{x_{0}}{y}\right)^{\lambda} [2]$

$$F(x_g, k_T^g) = [\pi Q_s^2(x_g)]^{-1} \exp(-k_T^{g^2}/Q_s^2(x_g)), Q_s^2(x) = Q_0^2 \left(\frac{x_0}{x}\right)^{\wedge} [2]$$

• KKP fragmentation function $D_{h/f}(z_h, \mu_F^2)$ of a quark with a flavor f into a neutral pion $h = \pi^0$ was used [3].

```
[1] p_{\tau}^{\text{cut}} = 1.5 (3.0) GeV @ RHIC (LHC)
```

[2] $Q_0^2 = 1 \text{ GeV}^2$, $x_0 = 3.04 \times 10^{-4}$, $\lambda = 0.288$ and $\sigma_0 = 23.03$ mb were obtained from the fit to the DIS data.

[3] B. A. Kniehl, G. Kramer and B. Potter, Nucl. Phys. B 582, 514 (2000)

γ^* - π azimuthal correlations in dAu @ RHIC

γ^* - π azimuthal correlations in dAu @ RHIC

- Similarly to Stasto et al. the away-side double-peak structure shows up in dAu.
- Independently of the factorization scale μ_F choice \Rightarrow it is expected also for pp.

γ^* - π azimuthal correlations in pp @ RHIC energies

- Away-side double-peak present also in pp collisions at RHIC.
- Shows up both in Fwd-Fwd and Centr-Fwd correlations ⇒ measurable!
- Centr-Fwd correlations are by two orders in magnitude smaller than Fwd-Fwd.

γ^* - π azimuthal correlations in pp @ LHC energies

For γ^* and π close to the phase space limit double peak emerges also in pp @ LHC.

γ^* - π azimuthal correlations in pA @ LHC energies

Increasing *A* smears the back-to-back pattern and suppresses the away-side peak.

In pPb a double-peak structure shows up also for the large invariant masses.

Dipole Color Singlet Model of Quarkonium Production

Heavy quark pair production in the dipole framework

- Replacing virtual photon with gluon one can try to describe process $G_a + p(A) \rightarrow q\bar{q}$, (q = c, b, t; a = 1, ..., 8) as a splitting $G \rightarrow q\bar{q}$ into dipole in the color background field of the target proton (nucleus).
- In Born approximation dominant contribution to inclusive production,

$$\frac{\frac{d\sigma(Gp \to q\bar{q} + X)}{d\ln \alpha} = \int d^2\rho \, \left| \Psi_{q\bar{q}}(\alpha, \rho) \right|^2 \, \sigma^p_{q\bar{q}}(\alpha\rho, X)}{d\ln \alpha}$$

$$\sigma_{q\bar{q}}^{\rho} = \sum_{S=1,\dots,8^{\pm}} \sigma_{3}^{S} = \frac{9}{8} \left[\left(\sigma_{q\bar{q}}(\alpha \rho) + \sigma_{q\bar{q}}((1-\alpha)\rho) \right] - \frac{1}{8} \sigma_{q\bar{q}}(\rho) \right]$$

Heavy quark pair production in the dipole framework

- Replacing virtual photon with gluon one can try to describe process
 G_a + p (A) → qq̄, (q = c, b, t; a = 1,...,8) as a splitting G → qq̄ into dipole in the color background field of the target proton (nucleus).
- In Born approximation dominant contribution to inclusive production, both in open charm and P-wave quarkonia production channels, are:

 $\Psi_{qar{q}}(lpha,
ho)$ – LC wavefunction giving rate of $G o qar{q}$, can be calculated perturbativelly:

$$\left|\Psi_{q\bar{q}}(\alpha,\rho)\right|^2 = \frac{\bar{\alpha}_s}{2\pi^2} \left[m_q^2 K_0^2(m_q \rho) + (\alpha^2 + (1-\alpha)^2)K_1^2(m_q \rho)\right]$$

 $\sigma_{q\bar{q}}^p$ – dipole cross section for inclusive (singlet + octet) $q\bar{q}$ production (GBW form):

$$\sigma_{q\bar{q}}^{p} = \sum_{S=1,2,3,4} \sigma_{3}^{S} = \frac{9}{8} \left[\left(\sigma_{q\bar{q}}(\alpha \rho) + \sigma_{q\bar{q}}((1-\alpha)\rho) \right] - \frac{1}{8} \sigma_{q\bar{q}}(\rho) \right]$$

Dipole Color Singlet Model of $pp \rightarrow \{q\bar{q}\}_{1+} + X$

In the dipole picture incoming gluon moves along the z-axis. \Rightarrow use collinear gluon PDF $xq(x, \mu^2)$ with k_{\perp} -distribution of projectile gluon implicitly integrated out (B. Kopeliovich et al., Nucl. Phys. A 696, 669 (2001)):

$$\frac{d\sigma_{incl}^{pp}}{dYd\alpha} = x_1 g(x_1, \mu^2) \frac{d\sigma(Gp \to q\bar{q} + X)}{d\alpha}, \ \mu^2 \approx M_{q\bar{q}}^2 = \frac{m_q^2 + k_{12}^2}{\alpha(1-\alpha)}$$

- $\Rightarrow p_T$ -distribution of heavy quarkonia is generated by ISR and FSR only.
- LO contribution to C-odd S-wave quarkonium production is due to extra

Dipole Color Singlet Model of $pp \rightarrow \{q\bar{q}\}_{1^+} + X$

In the dipole picture incoming gluon moves along the z-axis.

$$\frac{d\sigma_{incl}^{pp}}{dYd\alpha} = x_1 g(x_1, \mu^2) \frac{d\sigma(Gp \to q\bar{q} + X)}{d\alpha}, \ \mu^2 \approx M_{q\bar{q}}^2 = \frac{m_q^2 + k_{12}^2}{\alpha(1-\alpha)}$$

 LO contribution to C-odd S-wave quarkonium production is due to extra gluon emission off the produced heavy quark $q\bar{q}$ pair state (to produce $\{q\bar{q}\}_{1+}$ state at least 3 gluons need to be coupled to the quark line).

Color-singlet production in association with a gluon

- For S-wave quarkonia (e.g. J/ψ , $\psi(2S)$ and Υ) higher Fock states, e.g. $G+G\to q\bar q+G$ need to be included.
- Diagrams (5) and (6) with real gluon emission off a quark different from that coupled to the t-channel gluon are suppressed:

- Momentum transferred by color background field of the target proton to collinearly moving gluon with $k_{1\perp}=0$ is predominantly longitudinal one (exchanged gluons have typically soft transverse momenta $k_{2\perp}\sim m_g$). \Rightarrow in the perturbative limit, by momentum conservation J/ψ transverse momentum $\vec{p}_T\approx -\vec{k}_3$ is close to that of the radiated gluon $k_3\gg m_g$.
- ⇒ Transverse momentum correlation between S-wave quarkonium and (semi-hard) hadron from the fragmentation of the third gluon.

T production in pp collisions (preliminary results)

 $d\sigma/dp_T dY$ - spectra of $\Upsilon(1s)$ at mid-rapidity, from Tevatron (left) and LHC (right). CDF: Phys.Rev.Lett. 88 (2002) 161802, ATLAS: arXiv:1211.7255 [hep-ex]

J/ψ production in pp collisions (preliminary results)

Transverse momentum spectra of J/ψ at mid-rapidity, from RHIC (top), Tevatron (bottom left) and LHC (bottom right). CDF: Phys. Rev. Lett. 79, 572 (1997), CMS:arXiv:1111.1557 [hep-ex], STAR: arXiv:1208.2736 [nucl-ex]

Conclusions and Outlook

Conclusions

- ▶ Parameter-free color dipole description of DY production of gauge bosons and quarkonia in *pp/pA* was presented. This approach provides universal and robust framework going beyond standard pQCD factorisation.
- $\rightarrow \gamma^* \pi$ azimuthal correlations in pp reveal the same away-side

Conclusions

- ▶ Parameter-free color dipole description of DY production of gauge bosons and guarkonia in pp/pA was presented. This approach provides universal and robust framework going beyond standard pQCD factorisation.
- \triangleright DY spectra in pp/pA are quite sensitive to a different dipole cross section parametrizations.
- $\rightarrow \gamma^* \pi$ azimuthal correlations in pp reveal the same away-side

Conclusions

- ▶ Parameter-free color dipole description of DY production of gauge bosons and guarkonia in pp/pA was presented. This approach provides universal and robust framework going beyond standard pQCD factorisation.
- ightharpoonup DY spectra in pp/pA are quite sensitive to a different dipole cross section parametrizations.
- $ightharpoonup \gamma^*$ - π azimuthal correlations in *pp* reveal the same away-side double-peak structure observed previously in p(d)A calculations. It is present both in Fwd-Fwd and Centr-Fwd correlations. Width of a double-peak is strongly correlated with the magnitude of the saturation scale Q_s offering thus a possibility for its more direct measurements.
- ▶ Description of $d\sigma/dp_T$ of J/ψ and Υ within the dipole CSM provides substantial improvement over previous CS NLO calculations. Further test of the model will come from expected quarkonim—(semi-hard) hadron correlation.

Outlook

- Color dipole approach was used previously to study high- p_T suppression of forward hadrons at RHIC:
 - J. Nemchik, et al., Phys. Rev. C 78, 025213(2008)
 - J. Nemchik, M. Š., Nucl. Phys. A 830, 611C (2009), PoS ICHEP2010 (2010) 354

- Joining forward hadron with mid-rapidity quarkonium production
 forward-central correlations in pp and pA feasible at RHIC
- New class of measurements will reduce backgrounds and uncertainties in quarkonium production in pp/pA; allows to test h.o. effects in pQCD and disentangle them from e.g. CGC and other multi-particle effects.

Back up slides

Color dipole description of pA collisions

$$\bullet \ \sigma^N_{q\bar{q}}(\rho,x) \to \sigma^A_{q\bar{q}}(\rho,x) = 2 \ \int d^2b \left[1 - \exp\left(-\frac{1}{2} T_A(\mathbf{b}) \sigma^N_{q\bar{q}}(\rho,x)\right) \right]$$

• Gluon shadowing: $\sigma_{q\bar{q}}^{N}(\rho, x) \to \sigma_{q\bar{q}}^{N}(\rho, x) R_{G}(x, Q^{2}, \mathbf{b})$ leads to additional nuclear suppression in production of DY pairs at small x in the target. R_G - ratio of the gluon densities in nuclei and nucleon - was derived in [1]

 Initial-state energy loss suppression of nuclear PDFs at the kinematical limits [2]:

 $q_f(x, Q^2) \to q_f^A(x, Q^2, b) = C_v \, q_f(x, Q^2) \, \frac{e^{-\xi \sigma_{\text{eff}} T_A(b)} - e^{-\sigma_{\text{eff}} T_A(b)}}{(1 - \xi)(1 - e^{-\sigma_{\text{eff}} T_A(b)})}$

[1] B.Z. Kopeliovich et al. Phys. Rev. **D62**, 054022 (2000); ibid C65, 035201 (2002), J. Phys. G35, 115010 (2008).

[2] B.Z. Kopeliovich et al. Phys. Rev. C72, 054066 (2005); Int. J. Mod. Phys. E23, 1430006 (2014).